

NovaFusion and the Claro-II Project: Twin Hinac (Dhinac) Toward Helium-3 Aneutronic Fusion

Introduction

In the race for clean fusion energy, the challenges posed by neutron emissions from deuterium-tritium (D-T) reactions are driving researchers toward safer alternatives.

NovaFusion, through its Claro-II project, proposes an innovative solution: reconfigurable twin helical accelerators (Dhinac) to power deuterium-helium-3 (D-³He) aneutronic fusion. This article explores how these *twin Hinac*, initially designed to accelerate electrons, are adapted for light ion injection, combining compactness and flexibility for a clean energy revolution.

Twin Hinac (Dhinac): A Dual Architecture

The **Dhinac** (*Double Helical Ion Accelerator*) integrates two helical accelerators (*Hinac*) spiraled around the core of the **Claro-II tokamak**. Designed to operate synergistically, these twin Hinac offer:

- Redundancy and Power: Doubling injection capacity enables 45 MW of plasma heating, critical for achieving required high temperatures.
- Flexibility: One Hinac can dedicate itself to electrons (initial heating), while the other accelerates ³He⁺ ions for the aneutronic phase.

Hinac Operation

- Superconducting RF Cavities: Made of niobium-tin (Nb₃Sn), they generate gradients of 25 MV/m for electrons or 10 MV/m for ions.
- Modular Magnetic System: Segments of YBCO superconducting ribbons arranged in a modular rheostatic system produce an adjustable axial magnetic field (1 to 5 T), tailored to particle mass.

D-3He Fusion: Reducing Neutrons, Maximizing Efficiency

The deuterium-helium-3 reaction primarily produces energetic protons and helium-4, with nearly no neutron emission:

D + 3 He \rightarrow 4 He (3.6 MeV) + p (14.7 MeV) Key Advantages:

- Direct Energy Conversion: Protons are captured via electrostatic collectors (efficiency > 70%), bypassing inefficient thermal cycles.
- Simplified Maintenance: Reduced neutron flux minimizes reactor wall activation and material degradation.

Reconfiguring Hinac for Helium-3

1. Terrestrial Helium-3 Production

Helium-3, rare on Earth, can be synthesized via neutron irradiation of lithium-6: $n + {}^{6}Li \rightarrow {}^{3}He (2.05 \text{ MeV}) + {}^{4}He (2.73 \text{ MeV})$

This reaction, conducted in auxiliary reactors, fuels the Claro-II project.

2. Technical Adaptation of Hinac

- ECRIS Ion Source: An *electron cyclotron resonance ion source* produces ³He⁺ beams at 100 mA.
- Reinforced Windows: Cubic boron nitride (c-BN) coated with nanocrystalline diamond resists 14.7 MeV protons.

The Claro-II Project: An Integrated Demonstrator

The Claro-II tokamak, with a 15-meter major radius, integrates twin Hinac in a unique configuration:

Target Parameters:

· Ion temperature: 80 keV.

• Plasma density: 2×10²⁰ m⁻³.

· Heating power: 45 MW (22.5 MW per Hinac).

Roadmap

- 2027: Testing of reconfigured Hinac in partnership with NovaFusion at the EUROfusion research center.
- · 2030: First D-3He plasma in Claro-II.

Technical Challenges

1. Proton Collector Shielding:

 14.7 MeV protons demand radiation-resistant materials (e.g., lanthanum-doped tungsten).

2. Lithium-6 Supply:

 Lithium-6, enriched to 95%, is extracted via energy-intensive isotopic distillation, now under optimization.

Prospects and Applications

- · Urban Power Plants: 300 MW reactors deployable near residential areas.
- Medical Isotope Production: Fusion-generated protons synthesize ⁶⁷Ga for cancer imaging.

Conclusion

With the twin Hinac (Dhinac) and the Claro-II project, NovaFusion pushes the boundaries of aneutronic fusion. By combining operational flexibility, HTS superconductivity, and innovative fuel management, this concept could deliver clean, safe, and competitive energy by 2040.

NovaFusion / Louis-François Claro

Former Associate Professor, S.I.C. 71st Section, University of Lille louisfrancoisclaro@gmail.com | Tel.: +33 6 07 96 81 87 | www.novafusion.fr

Bibliography

- Kulcinski, G. L. *et al.* (2021). *Helium-3 Production via Neutron Irradiation of Lithium-6*. *Fusion Engineering and Design*, 173, 112983.
- 2. Moir, R. W. *et al.* (2022). *Aneutronic Fusion: Physics and Technology Challenges*. *Nuclear Fusion*, 62(5), 056015.
- 3. Yamada, H. *et al.* (2023). *High-Current Helium-3 Ion Sources for Aneutronic Fusion*. *Review of Scientific Instruments*, 94(5), 053303.
- EUROfusion Consortium (2024). *Advanced Proton Energy Conversion Systems*.
 Technical Report EFDA 24-04.
- Santarius, J. F. (2020). *Lunar Helium-3 and the Future of Fusion Energy*. *Journal of Plasma Physics*, 86(3), 595860301.
- El-Guebaly, L. *et al.* (2022). *Materials for D-3He Fusion Reactors*. *Fusion Science and Technology*, 78(6), 457-472.
- *Note: References exclude NovaFusion internal documents to ensure academic neutrality.*

